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10.1	 �Introduction

Human adipose tissue is comprised of three main fat 
deposits – visceral white fat, subcutaneous white fat, 
and brown fat – each with its own unique properties. In 
particular, white adipose tissue is associated with 
energy storage and hormone production, while brown 
adipose tissue is mainly responsible for heat production 
through energy expenditure (thermogenesis) [1]. Although 
many informative studies have been performed on cul-
tured adipocytes, there are still some aspects of adipo-
cyte function that require further investigation. For 
instance, the regulation of adipose tissue metabolism is 
controlled by activation of the autonomic nervous sys-
tem, delivery of a complex mixture of substrates and 
hormones to adipose tissue, feedback from autocrine 
and paracrine effectors secreted by adipocytes, and the 
vascularity of the adipocytes [2]. Humans are born with 
a specific numeric amount of adipocytes that multiply 
and develop until puberty, subsequently remaining con-
stant thereafter. Irrespective of exercise and/or strict 
dietary modification, humans cannot reduce the num-
ber of fat cells. Nonsurgical treatment such as aerobic 
exercise and balanced diet will eventually decrease adi-
pose cell mass; however, the actual number of those 
cells will remain constant [3]. Adipose tissue contains 
adipose-derived stem cells, which possess the ability to 
differentiate into multiple cellular lineages, a property 
that represents the key to regenerative medicine. By 
definition, stem cells are characterized by their ability 
to undergo multilineage differentiation and form termi-
nally differentiated cells. Guilak et  al. assessed this 
potential by culturing and ring cloning to select cells 
derived from one progenitor cell. Forty-five clones were 
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expanded through four passages and then induced for 
adipogenesis, osteogenesis, chondrogenesis, and neu-
rogenesis using lineage-specific differentiation media. 
The authors found that 81% of adipose stem cell (ASC) 
clones differentiated into at least one of the lineages [4]. 
An ideal stem cell, one that can potentially be used in 
regenerative medicine, should have the following char-
acteristics: (a) found in large quantities, (b) easily col-
lected or harvested, (c) is differentiated into multiple 
cell lineage pathways in a reproducible manner, and (d) 
can be easily transferred to an autologous or even allo-
geneic host [5]. Tissue-specific stem cells originate 
from specific organs such as: brain, gut, lung, liver, 
bone marrow, and adipose tissue [6]. It is well known 
that these stem cells persist in adults; however they rep-
resent a rare population “hidden” amongst other cell 
populations [7]. ASC have a broad differentiation 
potential, but their ability to develop is limited com-
pared to embryonic stem cells. They can be isolated 
from either bone marrow or adipose tissue. This popu-
lation was initially thought to differentiate only to their 
tissue of origin; however, it has been shown that ASC 
have the capacity to differentiate into cells of mesoder-
mal, endodermal, and ectodermal origin. Furthermore, 
they cross-lineage barriers and acquire the phenotype 
and biochemical properties of cells that are unique to 
other tissues [8–13]. Adipocytes develop from mesen-
chymal cells through a combination of transcriptional 
and nontranscriptional events that occur throughout 
human life. Adipocyte differentiation is a complex pro-
cess accompanied by simultaneous changes in cell 
morphology, hormone sensitivity, and gene expression 
[5]. Although, for many years, ASC have been described 
as pre-adipocytes [14, 15], today they are appreciated 
as multipotent cells with a chondrogenic, neurogenic, 
and osteogenic potential [14–17]. Sedentary lifestyle 
and limited time for exercise have contributed to irregu-
larities in body contour and excess adipocyte mass that 
is often resistant to the most strenuous exercise or 
weight loss efforts. The significant accumulation of 
subcutaneous fat among individuals in the United States 
and indeed world-wide in developed nations makes adi-
pose tissue an abundant source of ASC. Approximately 
400,000 liposuction procedures are performed in the 
United States each year, and these procedures yield 
anywhere from 100 mL to >3  L of adipocyte tissue 
[18]. Today, most of this lipoaspirate, which contains a 
significant amount of ASC with a wide range of thera-
peutic potential, is discarded.

10.2	 �Biomolecules and Adipose  
Stem Cells

Biomolecules refer to the biological materials which 
serve as the structural integrity of tissue-engineered 
constructs and regulate their components. The main 
components of biomolecules are the following cellular 
factors: growth, differentiation, angiogenic, pro-inflam-
matory, and gene modulated. The specific factors to be 
used for each tissue-engineered construct can be pro-
vided either exogenously or by local or systemic deliv-
ery. Adipose tissue is a dynamic “player” in endocrine 
physiology and serves as a source of cytokine secre-
tion. In the clinical setting, it has been shown that indi-
viduals with large volumes of adipose tissue are more 
likely to have increased levels of pro-inflammatory 
cytokines such as interleukin (IL) 6, IL-8, and tumor 
necrosis factor alpha (TNF-a). Furthermore, adipose 
tissue expresses hematopoietic growth factor and  
macrophage colony-stimulating factor (M-CSF), 
whose  expression can lead to adipose tissue volume 
expansion [19].

ASC are multipotent and can potentially differenti-
ate in various pathways in response to growth factors 
and environmental agents [20]. There is evidence that 
ASC can promote tissue recovery through the delivery 
and localized secretion of cytokines. Recent in  vivo 
studies support this hypothesis. Intravenous infusion 
of ASC improved recovery of limb function in mice 
following ischemic injury [21]. The positive effects of 
ASC in ischemia are most likely secondary to their 
ability to secrete angiogenic cytokines, such as hepato-
cyte growth factor (HGF) and vascular endothelial 
growth factor (VEGF).

In this chapter the authors reviewed the endocrine 
function and cytokine profile of ASC, and focused on 
elucidating the basic principles, as well as interactions, 
between adipose stem cells and cytokines, adipokines, 
or biomolecules in general.

10.2.1 � Angiogenic Factors

10.2.1.1 � Hepatocyte Growth Factor (HGF)
The role of implanting ASC into ischemic cardiac 
tissue as a means to increase angiogenesis is an 
emerging therapeutic approach [22, 23]. Most of the 
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clinical studies have used bone marrow cells which 
are only available in limited quantities and cannot be 
easily isolated. There are data to support that ASC 
secrete HGF, thus representing a potential source for 
cells to be utilized in cardiovascular cell therapy [19, 
24, 25]. In vitro studies have depicted a link between 
ASC-derived HGF and physiologic or pathologic 
processes. In particular, secretion of HGF by ASC 
has been shown to have a positive effect on tubule 
formation by vascular endothelial cells. This action 
was found to be independent of VEGF [26]. 
Unfortunately, Rahimi et  al. showed that HGF 
secreted by ASC promoted the proliferation of mam-
mary tumor epithelial cells [27]. Kilroy et al. reported 

the constitutive and inducible secretion of HGF by 
ASC in vitro. The authors showed that this property 
was dependent on the level of ASC differentiation. In 
particular, the adipocyte-differentiated ASC appear 
to lose their responsiveness to basic fibroblast growth 
factor (b-FGF) and failed to induce HGF expression. 
On the other hand, treatment of undifferentiated ASC 
with either b-FGF or EGF was associated with 
increased levels of HGF release. Finally, it appears 
that the addition of ascorbic acid increased the 
increased HGF secretion by a factor of twofold or 
greater (Fig. 10.1) [19].

In a similar manner, Rehman et  al. reported the 
secretion of HGF by human ASC in significant 
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Fig.  10.1  Hepatocyte growth factor (HGF) secretion. The 
secretion of HGF was determined by ELISA on conditioned 
medium from undifferentiated (a, c) and adipocyte-differenti-
ated (b, d) ASC following exposure to epidermal growth factor 
(EGF) (a, b) or basic fibroblast growth factor (bFGF) (c, d) in 

the absence (white bars) or presence (solid bars) of varying con-
centrations of 2-sodium ascorbic acid. The values represent the 
mean (ng/106 cells) ± S.D. of n = 3 ASC donors (Reprinted with 
permission from the publisher from Kilroy et al. [19])
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amounts (12,280 ± 2,944  pg/106 cells). In order to 
assess potential in  vivo viability and function, the 
authors transduced ASC, with a GFP-expressing 
adenovirus to facilitate tracking into mice limbs. 
One week after injection, 28 ± 2% of injected  
cells could be identified on serial sections of the 
muscle [25].

10.2.1.2 � Vascular Endothelial  
Growth Factor (VEGF)

Vascular endothelial growth factor (VEGF) promotes 
neovascularization during embryonic development, 
subsequent to tissue injury, following exercise, and 
under ischemic conditions, in general. It is part of the 
system that restores the oxygen supply to tissues when 
blood circulation is inadequate. VEGF is a subfamily 
of growth factors, specifically the platelet-derived 
growth factor family of cystine-knot growth factors. They 
are important signaling proteins involved in both vas-
culogenesis (the de novo formation of the embryonic 
circulatory system) and angiogenesis (the growth of 
blood vessels from preexisting vasculature). While 
secretion of VEGF by bone marrow stem cells has 
been documented [28], Rehman et al. [25] showed that 
ASC represent a source of VEGF, as well. The authors 
reported that over a 72-h period in basal medium with 
5% fetal bovine serum and no additional growth fac-
tors under normoxic conditions, ASC secreted signifi-
cant amounts of VEGF (1,203 ± 254  pg/106 cells). 
Interestingly, when ASC were cultured in hypoxic 
conditions, there was a fivefold increase in the secre-
tion of VEGF from 1,203 ± 254 to 5,980 ± 1,066 pg/106 
cells (p = 0.0016, paired t-test, n = 7). The property of 
ASC to react to a stimulus such as hypoxia shows that 
they can adapt to the environment into which they are 
placed (ischemic myocardium), by increasing the pro-
duction of VEGF in response to ischemia and thus, 
induce neovascularization.

10.2.2 � Hematopoietic and Pro-
inflammatory Factors

One of the most clinically relevant properties of 
bone marrow-derived mesenchyme is the ability to 
provide long-term hematopoietic support. ASC 

appear to have a similar level of hematopoietic cell 
expansion when compared with bone marrow-derived 
stroma cells. In order to assess their ability toward 
hematopoietic differentiation, Kilroy et al. [19] used 
purified CD34p Linneg cells to initiate long-term 
culture assays on ASC. After either 3 or 5 weeks, the 
cultures were examined to assess whether clono-
genic myeloid cells (CFC) had been maintained. 
Although hematopoiesis was present in the 3-week 
cultures; by 5  weeks, less clonogenic progenitors 
had been maintained. Those preliminary results sug-
gested that ASC can preserve hematopoiesis in vitro, 
especially in the short-term period. In order to 
directly compare the hematopoiesis potential of 
ASC and marrow-derived cells, the authors subse-
quently established long-term culture assays. Their 
results suggest that marrow-derived stroma cells 
provided more efficient long-term support for primi-
tive progenitors. Although ASC were less efficient 
than marrow cells, they still exhibited some true 
hematopoietic ability. When the authors exposed 
ASC to lipopolysaccharide (LPS), which is an ago-
nist for bone marrow stromal cell cytokine induc-
tion, the level of secreted IL-6 and IL-8 increased. 
More specifically, both IL-6 and IL-8 reached maxi-
mal mean levels of 7,845 and 6,506  pg/mL condi-
tioned medium, respectively, after 24  h of LPS 
exposure. Similarly, the hematopoietic cytokines: 
macrophage colony-stimulating factor (M-CSF) and 
granulocyte–macrophage colony-stimulating factor 
(GM-CSF) reached maximal mean levels of 976 and 
52  pg/mL, respectively, at 24  h. TNF-a however, 
reached its peak mean level of 112 pg/mL after 8 h 
of LPS exposure. IL-7 and the pro-inflammatory 
cytokine IL-11 were low. They displayed a signifi-
cant induction by ELISA, reaching maximal mean 
levels 24 h after LPS exposure of 3.4 and 12.7 pg/
mL, respectively (Fig. 10.2).

Consistent with the ELISAs, the steady-state levels 
of mRNAs for representative cytokines were elevated 
within 4 h following LPS exposure based on RT-PCR. 
IL-1a, IL1b, and IL-12 protein were not detected in the 
conditioned medium from undifferentiated ASC fol-
lowing LPS exposure. The data produced by this study 
indicate that ASC may have clinical value for the 
patient population undergoing hematopoietic stem cell 
transplantation following high-dose chemotherapy. 
Conclusively, there is potential of co-infusing ASC 
with hematopoietic stem cells as a means to optimize 
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Fig. 10.2  Pro-inflammatory and hematopoietic cytokine secre-
tion. The conditioned medium from undifferentiated ASC was 
assayed for secretion of selected cytokines at varying times fol-
lowing exposure to LPS (100 ng/mL) for periods of 0–24 h; (a) 
IL-6 (solid bar) and IL-8 (clear bar); (b) M-CSF; (c) GM-CSF 
(clear bar) and TNF (solid bar); (d) IL-7 (clear bar) and IL-11 

(solid bar). The values represent the mean (pg/mL) ± S.E.M. of 
n = 6–8 ASC donors. (e) The mRNA levels of selected cytokines 
in ASC from a representative donor were assayed by PCR anal-
ysis following exposure to LPS (100  ng/mL) for 0 or 4  h 
(Reprinted with permission from the publisher from Kilroy 
et al. [19])
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recovery of normal blood cell production and subse-
quently restore immune function.

The possible biomolecules used in adipose tissue 
engineering are shown in Table 10.1.

10.3	 �Conclusions

The evolving field of producing organs from the basic 
life unit, a cell, can potentially provide a unique solu-
tion to the aforementioned problems. The ability of 
ASC to secrete several biologic factors plus evidence at 
a basic science level lends way to ASC playing a major 
role in tissue engineering and organ regeneration.
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